229,00 €
+ 8,49 € Αποστολή

Data Mining Methods for Knowledge Discovery

  • Μάρκα: Unbranded

Data Mining Methods for Knowledge Discovery

  • Μάρκα: Unbranded
Τιμή: 229,00 €
Πωλήθηκε από:
229,00 €
+ 8,49 € Αποστολή

Σε απόθεμα

Δεχόμαστε τους ακόλουθους τρόπους πληρωμής

Περιγραφή

1 Data Mining and Knowledge Discovery. - 1. 1 Data Mining and Information Age: Emerging Quests. - 1. 2 Defining Knowledge Discovery. - 1. 3 Architectures of Knowledge Discovery. - 1. 4 Knowledge Representation. - 1. 5 Main Types of Revealed Patterns. - 1. 6 Basic Models of Data Mining. - 1. 7 Knowledge Discovery and Related Research Areas. - 1. 8 Main Features of a Knowledge Discovery Process. - 1. 9 Coping with Reality. Sampling in Databases. - 1. 10 Selected Examples of Knowledge Discovery Systems. - 1. 11 Summary. - References. - Additional Readings. - 2 Rough Sets. - 2. 1 Introduction. - 2. 2 Information System. - 2. 3 Indiscernibility Relation. - 2. 4 Discernibility Matrix. - 2. 5 Decision Tables. - 2. 6 Approximation of Sets. Approximation Space. - 2. 7 Accuracy of Approximation. - 2. 8 Approximation and Accuracy of Classification. - 2. 9 Classification and Reduction. - Reduct and Core. - 2. 10 Decision Rules. - 2. 11 Dynamic Reducts. - 2. 12 Summary. - 2. 13 Exercises. - References. - Appendix A2: Algorithms for Finding Minimal Subsets. - 3 Fuzzy Sets. - 3. 1 Introduction. - 3. 2 Basic Definition. - 3. 3 Types of Membership Functions. - 3. 4 Characteristics of a Fuzzy Set. - 3. 5 Membership Function Determination. - 3. 6 Fuzzy Relations. - 3. 7 Set Theory Operations and Their Properties. - 3. 8 The Extension Principle and Fuzzy Arithmetic. - 3. 9 InformationBased Characteristics of Fuzzy Sets. - 3. 10 Numerical Representation of Fuzzy Sets. - 3. 11 Rough Sets and Fuzzy Sets. - 3. 12 The Frame of Cognition. - 3. 13 Probability and Fuzzy Sets. - 3. 14 Summary. - 3. 15 Exercises. - References. - 4 Bayesian Methods. - 4. 1 Introduction. - 4. 2 Basics of Bayesian Methods. - 4. 3 Involving Object Features in Classification. - 4. 4 Bayesian Classification a General Case. - 4. 5 Statistical Classification Minimizing Risk. - 4. 6 Decision Regions. Probabilitiesof Errors. - 4. 7 Discriminant Functions. - 4. 8 Estimation of Probability Densities. - 4. 9 Probabilistic Neural Network (PNN). - 4. 10 Constraints in Design. - 4. 11 Summary. - 4. 12 Exercises. - References. - 5 Evolutionary Computing. - 5. 1 Genetic Algorithms. Concept and Algorithmic Aspects. - 5. 2 Fundamental Components of GAs 196 Encoding and Decoding. - 5. 3 GA. Formal Definition of Genetic Algorithms. - 5. 4 Schemata Theorem: a Cnceptual Backbone of Gas. - 5. 5 Genetic Computing. Further Enhancement. - 5. 6 Exploration and Exploitation of the Search Space. - 5. 7 Experimental Studies. - 5. 8 Classes of Evolutionary Computation. - 5. 9 Genetic Optimization of Rule-Based Description of Data: Pittsburgh and Michigan Approaches. - 5. 10 Summary. - 5. 11 Exercises. - References. - 6 Machine Learning. - 6. 1 Introduction. - 6. 2 Introduction to Generation of Hypotheses. - 6. 3 Overfitting. - 6. 4 Rule Algorithms. - 6. 5 Decison Tree Algorithms. - 6. 6 Hybrid Algorithms. - 6. 7 Discretization of Continuous-Valued Attributes. - 6. 7. 1 Information-Theoretic Discretization Methods. - 6. 8 Hypothesis Evaluation. - 6. 9 Comparison of the Three Families of Algorithms. - 6. 10 Machine Learning in Knowledge Discovery. - 6. 11 Machine Learning and Rough Sets. - 6. 12 Summary. - 6. 13 Exercises. - References. - Appendix A6: Diagnosing Coronary Artery Disease (CAD). - References. - 7 Neural Networks. - 7. 1 Introduction. - 7. 2 Radial Basis Function (RBF) Network. - 7. 3 RBF Networks in Knowledge Discovery. - 7. 4 Kohonen's Self Organizing Map(SOM)Network. - 7. 5 Image Recognition Neural Network (IRNN) 357 Sensory Layer. - 7. 6 Summary. - 7. 7 Exercises. - References. - Appendix A7: Image Similarity(IS) Measure. - 8 Clustering. - 8. 1 Unsupervised Learning: a General Taxonomy and Related Algorithmic Aspects. - 8. 2 Hierarchical Clustering. - 8. 3 ObjectiveFunctionBased Clustering. - 8. 4 Clustering Methods and Data Mining. - 8. 5 Hierarchical Clustering in Building Associations in the Data. - 8. 6 Clustering under Partial Supervision in Data Mining. - 8. 7 A Neural Realization of Similarity Between Patterns. - 8. 8 Numerical Experiments. - 8. 9 Summary. - 8. 10 Exercises. - References. - 9 Preprocessing. - 9. 1 Patterns and Features. - 9. 2 Preprocessing Operations. - 9. 3 Principal Component Analysis Feature Extraction and Reduction. - 9. 4 Supervised Feature Reduction Based on Fisher's Linear Discriminant Analysis. - 9. 5 Sequence of Karhunen-Loeve and Fisher's Linear Discriminant Projections. - 9. 6 Feature Selection. - 9. 7 Numerical Experiments Texture Image Classification. - 9. 8 Summary. - 9. 9 Exercises. - References. Language: English
  • Μάρκα: Unbranded
  • Κατηγορία: Πληροφορική & Διαδίκτυο
  • Művész: Krzysztof J. Cios
  • Nyelv: English
  • Kiadó / Kiadó: Springer
  • Formátum: Paperback
  • Oldalak száma: 495
  • Megjelenés dátuma: 2012/10/26
  • Fruugo ID: 343652847-752833843
  • ISBN: 9781461375579

Παράδοση & Επιστροφές

Αποστέλλεται σε 4 μέρες

  • STANDARD: 8,49 € - Παράδοση μεταξύ Τετ 08 Οκτωβρίου 2025–Δευ 13 Οκτωβρίου 2025

Αποστέλλεται από Ηνωμένο Βασίλειο.

Κάνουμε ό,τι καλύτερο μπορούμε για να εξασφαλίσουμε ότι τα προϊόντα που παραγγέλνετε αποστέλλονται σε εσάς πλήρως και σύμφωνα με τις προδιαγραφές σας. Παρ' όλα αυτά, αν παραλάβετε μία ελλιπή παραγγελία ή προϊόντα διαφορετικά από αυτά που παραγγείλατε ή αν υπάρχει κάποιος άλλος λόγος που δεν είστε ικανοποιημένοι με την παραγγελία, μπορείτε να την επιστρέψετε ολόκληρη ή κάποια προϊόντα από αυτή και να λάβετε πλήρη επιστροφή χρημάτων για τα προϊόντα. Προβολή πλήρους πολιτικής επιστροφών